

vADC5_S_T work in progress

Differential SAR-Based Voltage-Mode Synchronous ADC with S/H

Proof of silicon due 1Q25 | Simulation results below

Parameter (units)	Typical Simulation	Typical Conditions: V_{DD} =1v, Temperature = 27C, unless otherwise stated. Operating V_{DD} high
	Spec	≈1v, Operating V _{DD} low ≈TBD,
Resolution (Bits)	8	
Differential V _{IN} peak-to-peak (v)	$0 { ightarrow} V_{REF}$	V _{REF} P ≈1v & V _{REF} N ≈0v, V _{CM} ≈ 0.5xV _{DD}
I _{DD} (μA)	~1.1	$f_{S/H} \approx 40 \text{KHz}$
ENOB (bits)	~7.5	V _{IN} sweep 0→Full-Scale
Gain Error (%)	~30	V _{IN} sweep 0→Full-Scale
Input Bandwidth = AIN _{BW} (KHz)	25	-3dB frequency
f _{S/H} max (KHz)	tbd	1-bit Loss of ENOB
Digital I/O Levels (v)	$0 \rightarrow V_{DD}$	
Cell Size (μm X μm)	~127x64	
TSMC Process Node (nm)	65	

^{*}See Disclaimers*

vADC +S/H Cell Layout

vADC +S/H Block Diagram

Features:

- 8-bit resolution, Low-Power, Differential voltage-input, Synchronous vADC with S/H & Power-Down
- Optional: Digital output port (D_{OUT}) can be serialized as needed.
- Digital power consumption reduces dynamically in steady-state V_{IN} conditions, enabled by asynchronous vADC architecture.
- $V_{IN}P$ and $V_{IN}N$ terminals swing ~1v Peak-to-Peak around common mode voltage (e.g., $V_{CM} \approx 0.5 \times V_{DD}$)
- Operating condition example: V_{REF}P ≈ 1v and V_{REF}N ≈ 0v