vADC5_S_T work in progress #### Differential SAR-Based Voltage-Mode Synchronous ADC with S/H Proof of silicon due 1Q25 | Simulation results below | Parameter (units) | Typical
Simulation | Typical Conditions: V_{DD} =1v, Temperature = 27C, unless otherwise stated. Operating V_{DD} high | |---|--------------------------|--| | | Spec | ≈1v, Operating V _{DD} low ≈TBD, | | Resolution (Bits) | 8 | | | Differential V _{IN} peak-to-peak (v) | $0 { ightarrow} V_{REF}$ | V _{REF} P ≈1v & V _{REF} N ≈0v, V _{CM} ≈ 0.5xV _{DD} | | I _{DD} (μA) | ~1.1 | $f_{S/H} \approx 40 \text{KHz}$ | | ENOB (bits) | ~7.5 | V _{IN} sweep 0→Full-Scale | | Gain Error (%) | ~30 | V _{IN} sweep 0→Full-Scale | | Input Bandwidth = AIN _{BW} (KHz) | 25 | -3dB frequency | | f _{S/H} max (KHz) | tbd | 1-bit Loss of ENOB | | Digital I/O Levels (v) | $0 \rightarrow V_{DD}$ | | | Cell Size (μm X μm) | ~127x64 | | | TSMC Process Node (nm) | 65 | | ^{*}See Disclaimers* ## vADC +S/H Cell Layout ### vADC +S/H Block Diagram #### **Features:** - 8-bit resolution, Low-Power, Differential voltage-input, Synchronous vADC with S/H & Power-Down - Optional: Digital output port (D_{OUT}) can be serialized as needed. - Digital power consumption reduces dynamically in steady-state V_{IN} conditions, enabled by asynchronous vADC architecture. - $V_{IN}P$ and $V_{IN}N$ terminals swing ~1v Peak-to-Peak around common mode voltage (e.g., $V_{CM} \approx 0.5 \times V_{DD}$) - Operating condition example: V_{REF}P ≈ 1v and V_{REF}N ≈ 0v