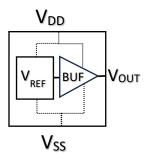

## $V_{REF}8$ (internal #chip2\_DTMOST)

Ultra-Low-Power Fractional Voltage Reference with low TC. Proof of silicon with typical/preliminary measurements available.


Please contact <a href="mailto:sales@ailinear.com">sales@ailinear.com</a> for more information & order specific evaluation

| Parameter                | Typical | Condition                                                |
|--------------------------|---------|----------------------------------------------------------|
|                          | Spec    |                                                          |
| I <sub>DD</sub> (nA)     | ~49     | V <sub>DD</sub> =1v, Temperature = 27C                   |
| V <sub>DD</sub> Low (v)  | ~0.7    | V <sub>DD</sub> =1v, Temperature = 27C                   |
| V <sub>DD</sub> High (v) | ~1      | $V_{DD}$ sweep $0v \rightarrow 1.1v$ , Temperature = 27C |
| VREF <sub>OUT</sub> (v)  | ~0.43   | V <sub>DD</sub> =1v, Temperature = 27C                   |
| TC (PPM/C)               | TBD     | Test in progress. See Disclaimer                         |
| PSRR (dB)                | TBD     | Test in progress. See Disclaimer                         |

\*See Disclaimer\*







V<sub>REF</sub> Cell Size ~100μm×82 μm in TSMC 65nm CMOS

## Features:

- Small CMOS (~100 $\mu$ m×82  $\mu$ m) bandgap voltage reference (V<sub>OUT</sub>  $\approx$  V<sub>REF</sub>  $\approx$  0.43) Intellectual Property (IP) cell operates in subthreshold with ultra-low I<sub>DD</sub> (typical 49nA)
- Patented Low noise design to generate proportional to absolute voltage (VPTAT) without resistors
- Equipped with start-up, power-down, and TC trim capability
- Includes an internal buffer (BUF) to drive larger loads (e.g. Mega  $\Omega$ s) in a SoC
- No clock, no switch-capacitor, and no related noise or injections into substrate
- Operating in subthreshold and requiring no resistors facilitate small silicon area and operations at ultra-low currents
- Operation at low V<sub>DD</sub> levels ≈V<sub>REF</sub> + 2V<sub>DS</sub>
- Manufacturable on trailing-to-bleeding edge digital CMOS
- Based on 65nm digital CMOS at TSMC and portable to smaller fabrication nodes.