


IREF2A (internal chip1_IBIAS2)

Ultra-Low-Power Reference Current with low TC. Proof of silicon with typical/preliminary measurements available. (Please contact sales@ailinear.com for more information)

Parameter	Typical	Condition
	Spec	
I _{DD} (nA)	~40	V _{DD} =2v, Temperature = 27C
V _{DD} Low (v)	~0.75	V _{DD} sweep 0v→2.2v, Temperature = 27C
V _{DD} High (v)	~2	V _{DD} sweep 0v→2.2v, Temperature = 27C
TC (%/C)	~0.2	V _{DD} =2v, ΔT ~30C
VC (%/V)	~0.3	V _{DD} sweep 1v→2.2v, Temperature = 27C

See Disclaimer

I_{REF} Cell Size ~96μm×57 μm in TSMC 180nm CMOS

Features:

- Programmable (pre or post silicon) I_{REF} that tracks I_{DD}
- Tiny CMOS ($^96\mu m \times 57 \mu m$) bias current Intellectual Property (IP) cell operating in subthreshold with ultra-low current consumption I_{DD} (typical 40nA)
- Large value but tiny active bias resistor (R_{NMOS}) as a function of NMOSFET keeps I_{DD} ultra-low
- Most suitable for SoC whose analog (e.g., oscillator, comparator, ADC) performance best correlates with NMOSFET parameters
- Utilizing cascode current mirrors (1V_{GS}+2V_{DS}) for lower operating V_{DD}
- Suitable for SoC optimized for IREF voltage loop that is coupled to Vss
- I_{DD} and I_{REF} absolute value mostly a function of NMOSFET mobility (μ) inherently more stable to help narrow I_{DD} variation over normal fabrication process corners
- Based on 180nm digital CMOS at TSMC and portable to smaller fabrication nodes.