IREF2 (internal chip2_IREF2) Ultra-Low-Power Reference Current with low TC. Proof of silicon with typical/preliminary measurements available. (Please contact sales@ailinear.com for more information) | Parameter | Typical | Condition | |--------------------------|---------|--| | | Spec | | | I _{DD} (nA) | ~74 | V _{DD} =1v, Temperature = 27C | | V _{DD} Low (v) | ~0.7 | V _{DD} sweep 0v→1.1v, Temperature = 27C | | V _{DD} High (v) | ~1 | V_{DD} sweep $0v\rightarrow1.1v$, Temperature = 27C | | TC (%/C) | ~TBD | V _{DD} =1v, ΔT ~30C | | VC (%/V) | ~TBD | V _{DD} sweep 1v→1.1v, Temperature = 27C | *See Disclaimer* I_{REF} Cell Size ~70 μ m×30 μ m in TSMC 65nm CMOS ## I_{REF} Block Diagram ## Features: - Programmable (pre or post silicon) IREF that tracks IDD - Tiny CMOS ($^{\sim}70\mu\text{m}\times30~\mu\text{m}$) bias current Intellectual Property (IP) cell operating in subthreshold with ultra-low current consumption I_{DD} (typical 74nA) - Large value but tiny active bias resistor (R_{PMOS}) as a function of PMOSFET keeps I_{DD} ultra-low - Most suitable for SoC whose analog (e.g., oscillator, comparator, ADC) performance best correlates with PMOSFET parameters - Utilizing cascode current mirrors (1V_{GS}+2V_{DS}) for lower operating V_{DD} - Suitable for SoC optimized for IREF voltage loop that is coupled to VDD - I_{DD} and I_{REF} absolute value mostly a function of PMOSFET mobility (μ) inherently more stable to help narrow I_{DD} variation over normal fabrication process corners - Based on 65nm digital CMOS at TSMC and portable to smaller fabrication nodes.