

IREF2 (internal chip2_IREF2)

Ultra-Low-Power Reference Current with low TC. Proof of silicon with typical/preliminary measurements available. (Please contact sales@ailinear.com for more information)

Parameter	Typical	Condition
	Spec	
I _{DD} (nA)	~74	V _{DD} =1v, Temperature = 27C
V _{DD} Low (v)	~0.7	V _{DD} sweep 0v→1.1v, Temperature = 27C
V _{DD} High (v)	~1	V_{DD} sweep $0v\rightarrow1.1v$, Temperature = 27C
TC (%/C)	~TBD	V _{DD} =1v, ΔT ~30C
VC (%/V)	~TBD	V _{DD} sweep 1v→1.1v, Temperature = 27C

See Disclaimer

 I_{REF} Cell Size ~70 μ m×30 μ m in TSMC 65nm CMOS

I_{REF} Block Diagram

Features:

- Programmable (pre or post silicon) IREF that tracks IDD
- Tiny CMOS ($^{\sim}70\mu\text{m}\times30~\mu\text{m}$) bias current Intellectual Property (IP) cell operating in subthreshold with ultra-low current consumption I_{DD} (typical 74nA)
- Large value but tiny active bias resistor (R_{PMOS}) as a function of PMOSFET keeps I_{DD} ultra-low
- Most suitable for SoC whose analog (e.g., oscillator, comparator, ADC) performance best correlates with PMOSFET parameters
- Utilizing cascode current mirrors (1V_{GS}+2V_{DS}) for lower operating V_{DD}
- Suitable for SoC optimized for IREF voltage loop that is coupled to VDD
- I_{DD} and I_{REF} absolute value mostly a function of PMOSFET mobility (μ) inherently more stable to help narrow I_{DD} variation over normal fabrication process corners
- Based on 65nm digital CMOS at TSMC and portable to smaller fabrication nodes.