IREF 1A (internal chip1_IBIAS1) Ultra-Low-Power Reference Current with low TC (Experimental). Proof of silicon with typical/preliminary measurements available. (Please contact sales@ailinear.com for more information) | Parameter | Typical | Condition | |--------------------------|---------|---| | | Spec | | | I _{DD} (nA) | ~40 | V _{DD} =2v, Temperature = 27C | | V _{DD} Low (v) | ~1 | V _{DD} sweep 0v→2.2v, Temperature = 27C | | V _{DD} High (v) | ~2 | V_{DD} sweep $0v\rightarrow 2.2v$, Temperature = 27C | | TC (%/C) | ~0.3 | V _{DD} =2v, ΔT ~30C | | VC (%/V) | ~0.2 | V_{DD} sweep 1v \rightarrow 2.2v, Temperature = 27C | *See Disclaimer* V_{SS} **IREF Block Diagram** I_{REF} Cell Size ~135 μ m×80 μ m in TSMC 180nm CMOS ## Features: - Programmable (pre or post silicon) IREF that tracks IDD - Option to program positive or negative TC - Tiny CMOS (~135μm×80 μm) bias current Intellectual Property (IP) cell operating in subthreshold with ultra-low current consumption I_{DD} (typical 40nA) - Large value but tiny active bias resistor (R_{PMOS}) as a function of a pair of PMOSFET keeps I_{DD} ultralow - Most suitable for SoC whose analog (e.g., oscillator, comparator, ADC) performance best correlates with PMOSFET parameters - Suitable for SoC optimized for IREF voltage loop that is coupled to VSS - I_{DD} and I_{REF} absolute value mostly a function of PMOSFET mobility (μ) inherently more stable to help narrow I_{DD} variation over normal fabrication process corners - Based on 180nm digital CMOS at TSMC and portable to smaller fabrication nodes.