

IREF 1 (internal chip2_IREF1)

Ultra-Low-Power Reference Current with low TC. Proof of silicon with typical/preliminary measurements available. (Please contact sales@ailinear.com for more information)

Parameter	Typical	Condition
	Spec	
I _{DD} (nA)	~50	V _{DD} =1v, Temperature = 27C
V _{DD} Low (v)	~0.7	V _{DD} sweep 0v→1.1v, Temperature = 27C
V _{DD} High (v)	~1	V_{DD} sweep $0v\rightarrow1.1v$, Temperature = 27C
TC (%/C)	TBD	V _{DD} =1v, ΔT ~30C
VC (%/V)	TBD	V_{DD} sweep 1v \rightarrow 1.1v, Temperature = 27C

See Disclaimer

 V_{DD} $I_{REF \alpha}$ $f(I_{DD})$ V_{SS}

IREF Block Diagram

 I_{REF} Cell Size ~80 μ m×50 μ m in TSMC 65nm CMOS

Features:

- Programmable (pre or post silicon) I_{REF} that tracks I_{DD}
- Tiny CMOS ($^{80}\mu m \times 50 \mu m$) bias current Intellectual Property (IP) cell operating in subthreshold with ultra-low current consumption I_{DD} (typical 50nA)
- Large value but tiny active bias resistor (R_{NMOS}) as a function of NMOSFET keeps I_{DD} ultra-low
- Most suitable for SoC whose analog (e.g., oscillator, comparator, ADC) performance best correlates with NMOSFET parameters
- Utilizing cascode current mirrors (1V_{GS}+2V_{DS}) for lower operating V_{DD}
- Suitable for SoC optimized for IREF voltage loop that is coupled to VSS
- I_{DD} and I_{REF} absolute value mostly a function of NMOSFET mobility (μ) inherently more stable to help narrow I_{DD} variation over normal fabrication process corners
- Based on 65nm digital CMOS at TSMC and portable to smaller fabrication nodes.