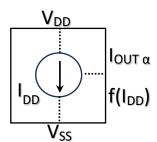


IBIAS 8

Ultra-Low-Power Proportional to Absolute Temperature (IPTAT) Bias Current Source. Proof of silicon with typical/preliminary measurements available. (Please contact sales@ailinear.com)


Parameter	Typical Spec	Condition
I _{DD} (nA)	11	V _{DD} =2v, Temperature = 27C
V _{DD} Low (v)	0.9	V _{DD} sweep 0v→2.2v, Temperature = 27C
V _{DD} High (v)	2	V _{DD} sweep 0v→2.2v, Temperature = 27C
TC (%/C)	0.5	V _{DD} =2v, ΔT ~30C
VC (%/V)	0.3	V _{DD} sweep 1v→2.2v, Temperature = 27C

^{**} see disclaimer

Cell Size ~60µm×40 µm in TSMC 180nm CMOS

Block Diagram

Features:

- Programmable (pre or post silicon) I_{OUT} that tracks I_{DD}
- Tiny CMOS (~60μm×40 μm) bias current Intellectual Property (IP) cell operating in subthreshold with ultra-low current consumption I_{DD} (typical 11nA)
- Large value but tiny active bias resistor (R_{PMOS}) as a function of PMOSFET keeps I_{DD} ultra-low
- Most suitable for SoC whose analog (e.g., oscillator, comparator, ADC) performance best correlates with PMOSFET parameters
- Utilized regulated cascode current mirrors (RGC) to enhance IBIAS voltage VDD coefficient
- Suitable for SoC where I_{BIAS} is more optimized when PTAT Kirkoff Voltage Loop (KVL) is coupled to V_{DD}
- I_{DD} and I_{OUT} absolute value mostly a function of PMOSFET mobility (μ) inherently more stable to help narrow I_{DD} variation over fabrication process corners
- Based on 180nm digital CMOS at TSMC and portable to smaller fabrication nodes.