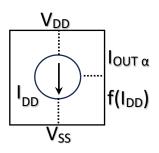


## I<sub>BIAS</sub>5


Ultra-Low-Power Proportional to Absolute Temperature (I<sub>PTAT</sub>) Bias Current Source. Proof of silicon with typical/preliminary measurements available. (Please contact sales@ailinear.com)

| Parameter                | Typical<br>Spec | Condition                                                |
|--------------------------|-----------------|----------------------------------------------------------|
| I <sub>DD</sub> (nA)     | 11              | V <sub>DD</sub> =2v, Temperature = 27C                   |
| V <sub>DD</sub> Low (v)  | 0.8             | $V_{DD}$ sweep $0v \rightarrow 2.2v$ , Temperature = 27C |
| V <sub>DD</sub> High (v) | 2               | $V_{DD}$ sweep $0v \rightarrow 2.2v$ , Temperature = 27C |
| TC (%/C)                 | 0.4             | V <sub>DD</sub> =2ν, ΔT ~30C                             |
| VC (%/V)                 | 0.5             | $V_{DD}$ sweep $1v \rightarrow 2.2v$ , Temperature = 27C |

\*\* see disclaimer



## **Block Diagram**



Cell Size ~62 $\mu$ m×48  $\mu$ m in TSMC 180nm CMOS

## Features:

- Patented
- Programmable (pre or post silicon) I<sub>OUT</sub> that tracks I<sub>DD</sub>
- Tiny CMOS (~62µm×48 µm) bias current Intellectual Property (IP) cell operating in subthreshold with ultra-low current consumption I<sub>DD</sub> (typical 11nA)
- Large value but tiny active bias resistor (R<sub>NMOS</sub>) as a function of NMOSFET keeps I<sub>DD</sub> ultra-low
- Most suitable for SoC whose analog (e.g., oscillator, comparator, ADC) performance best correlates with NMOSFET parameters
- Suitable for SoC where I<sub>BIAS</sub> is more optimized when V<sub>SS</sub> coupled with PTAT Kirkoff Voltage Loop (KVL)
- Utilizing PTAT loop with NMOSFETs needing 1V<sub>GS</sub>+2V<sub>DS</sub> for lower V<sub>DD</sub> operating range
- I<sub>DD</sub> and I<sub>OUT</sub> absolute value mostly a function of NMOSFET mobility (μ) inherently more stable to help narrow I<sub>DD</sub> variation over fabrication process corners
- Based on 180nm digital CMOS at TSMC and portable to smaller fabrication nodes.