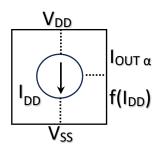

IBIAS 14 (internal IREF4 in 65nm)

Ultra-Low-Power Proportional to Absolute Temperature (I_{PTAT}) Bias Current Source. Proof of silicon with typical/preliminary measurements available. (Please contact sales@ailinear.com)

Parameter	Typical	Condition
	Spec	
I _{DD} (nA)	13	V _{DD} =1v, Temperature = 27C
V _{DD} Low (v)	0.6	V _{DD} sweep 0v→1.1v, Temperature = 27C
V _{DD} High (v)	1	V _{DD} sweep 0v→1.1v, Temperature = 27C
TC (%/C)	0.6	V _{DD} =1v, ΔT ~30C
VC (%/V)	0.5	V _{DD} sweep 0.6v→1.1v, Temperature = 27C


See Disclaimer

Cell Layout

Cell Size $^45\mu m \times 30 \mu m$ in TSMC 65nm CMOS

Block Diagram

Features:

- Programmable (pre or post silicon) IOUT that tracks IDD
- Tiny CMOS (~45μm×30 μm) bias current Intellectual Property (IP) cell operating in subthreshold with ultra-low current consumption I_{DD} (typical 13nA)
- Large value but tiny active bias resistor (R_{PMOS}) as a function of PMOSFET keeps I_{DD} ultra-low
- Most suitable for SoC whose analog (e.g., oscillator, comparator, ADC) performance best correlates with PMOSFET parameters
- Utilizing cascode current mirrors (1V_{GS}+2V_{DS}) for lower operating V_{DD}
- Suitable for SoC where I_{BIAS} is more optimized when PTAT Kirkoff Voltage Loop (KVL) is coupled to
 V_{DD}
- I_{DD} and I_{OUT} absolute value mostly a function of PMOSFET mobility (μ) inherently more stable to help narrow I_{DD} variation over fabrication process corners
- Based on 65nm digital CMOS at TSMC and portable to smaller fabrication nodes