IBIAS 13 Ultra-Low-Power Proportional to Absolute Temperature (I_{PTAT}) Bias Current Source. Proof of silicon with typical/preliminary measurements available. (Please contact sales@ailinear.com) | Parameter | Typical | Condition | |--------------------------|---------|--| | | Spec | | | I _{DD} (nA) | 10 | V _{DD} =1v, Temperature = 27C | | V _{DD} Low (v) | 0.6 | V _{DD} sweep 0v→1.1v, Temperature = 27C | | V _{DD} High (v) | 1 | V _{DD} sweep 0v→1.1v, Temperature = 27C | | TC (%/C) | 0.6 | V _{DD} =1v, ΔT ~30C | | VC (%/V) | 0.5 | V _{DD} sweep 0.6v→1.1v, Temperature = 27C | *See Disclaimer* Cell Size ~60μm×30 μm in TSMC 65nm CMOS ## Features: - Programmable (pre or post silicon) I_{OUT} that tracks I_{DD} - Tiny CMOS (~60μm×30 μm) bias current Intellectual Property (IP) cell operating in subthreshold with ultra-low current consumption I_{DD} (typical 10nA) - Large value but tiny active bias resistor (R_{PMOS}) as a function of NMOSFET keeps I_{DD} ultra-low - Most suitable for SoC whose analog (e.g., oscillator, comparator, ADC) performance best correlates with NMOSFET parameters - Utilizing cascode current mirrors (1V_{GS}+2V_{DS}) for lower operating V_{DD} - Suitable for SoC where I_{BIAS} is more optimized when PTAT Kirkoff Voltage Loop (KVL) is coupled to V_{SS} - I_{DD} and I_{OUT} absolute value mostly a function of NMOSFET mobility (μ) inherently more stable to help narrow I_{DD} variation over fabrication process corners - Based on 65nm digital CMOS at TSMC and portable to smaller fabrication nodes.