I_{BIAS}11 Ultra-Low-Power Proportional to Absolute Temperature (IPTAT) Bias Current Source. Proof of silicon with typical/preliminary measurements available. (Please contact sales@ailinear.com) | Parameter | Typical | Condition | |--------------------------|---------|--| | | Spec | | | I _{DD} (nA) | 12 | V _{DD} =2v, Temperature = 27C | | V _{DD} Low (v) | 0.8 | V _{DD} sweep 0v→2.2v, Temperature = 27C | | V _{DD} High (v) | 2 | V _{DD} sweep 0v→2.2v, Temperature = 27C | | TC (%/C) | 0.4 | V _{DD} =2v, ΔT ~30C | | VC (%/V) | 0.4 | V _{DD} sweep 1v→2.2v, Temperature = 27C | *See Disclaimer* Cell Size ~68µm×50 µm in TSMC 180nm CMOS ## Features: - Patented - Programmable (pre or post silicon) I_{OUT} that tracks I_{DD} - Tiny CMOS (~68μm×50 μm) bias current Intellectual Property (IP) cell operating in subthreshold with ultra-low current consumption IDD (typical 12nA) - Large value but tiny active bias resistor (R_{PMOS}) as a function of PMOSFET keeps I_{DD} ultra-low - Most suitable for SoC whose analog (e.g., oscillator, comparator, ADC) performance best correlates with PMOSFET parameters - Suitable for SoC where I_{BIAS} is more optimized when V_{SS} coupled with PTAT Kirkoff Voltage Loop (KVL) - Utilizing PTAT loop with NMOSFETs needing 1V_{GS}+2V_{DS} for lower V_{DD} operating range - I_{DD} and I_{OUT} absolute value mostly a function of PMOSFET mobility (μ) inherently more stable to help narrow I_{DD} variation over fabrication process corners - Based on 180nm digital CMOS at TSMC and portable to smaller fabrication nodes.