AMP2_2 <u>Smart Amplifier</u>: Ultra-Low-Power, Low-Noise, High-Gain, Near Rail-To-Rail input/output (I/O), Moderate-Speed Buffer Amplifier. Proof of silicon with typical/preliminary measurements available. Please contact sales@ailinear.com for more information & ordering specific evaluation. | Parameter | Typical Spec | Typical Conditions: V _{DD} =1v, Temperature = 27C, | |--------------------------|--------------|---| | | | unless otherwise stated | | I _{DD} (nA) | ~100 | sAMP Gain=1 & V _{INPUT} ≈ 0.5 V _{DD} | | V _{DD} Low (v) | ~0.8 | V _{DD} sweep 0v→1v | | V _{DD} High (v) | ~1 | V _{DD} sweep 0v→1v | | V _{OFFSET} (mv) | ~±5 | sAMP Gain=1 & V _{INPUT} ≈ 0.5 V _{DD} | | I/O Swing to Rails (mv) | ~±25 | V _{DD} sweep 0v→2v | | Gain (dB) | ~88 | sAMP Gain=1 & V _{INPUT} ≈ 0.5 V _{DD} . Tested at higher | | | | frequencies and extrapolated to DC | | PSRR (dB) | ~80 | sAMP Gain=1 & V _{INPUT} ≈ 0.5 V _{DD} . Tested at higher | | | | frequencies and extrapolated to DC | | Noise (μν/νHz) | ~8 | V _{OUT} noise 10Hz. sAMP Gain=1 & V _{INPUT} ≈ 0.5 V _{DD} . | | fu (KHz) | ~5 | sAMP Gain=1 & 10mv p-p V _{INPUT} mid ≈ 0.5 V _{DD} | | SR (v/ms) | ~140 | sAMP Gain=1 & 0.8v p-p pulse V _{INPUT} mid ≈ 0.5 V _{DD} | | ts (µs) | ~30 | sAMP Gain=1 & 0.8v p-p pulse V _{INPUT} mid ≈ 0.5 V _{DD} | | Cell Size (μm X μm) | ~105x110 | | | TSMC Process Node (nm) | 65 | | ### *See Disclaimers* ## sAMP Cell Layout ## sAMP Block Diagram #### Features: - The sAMP's I_Q ≈ f(PTAT) → improved dynamic response's TC - The $I_{DD} \approx f(I_Q) \approx f(\mu_{NMOS}) \approx f(R_{NMOS}) \neq f(V_{TH}) \rightarrow I_{DD}$ less sensitive to manufacturing variations - The R_{NMOS} inside PTAT voltage loop coupled to V_{SS} for less sensitivity to V_{DD} noise - At ultra-low IDD, utilizing voltage-mode gain boosting in FCTA stage - The sAMP with internal class AB (push-pull) buffer (BUF) can drive larger loads (e.g. 10s of mega Ω s) in a low-power SoC