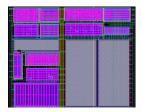
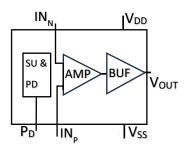


AMP2_2


<u>Smart Amplifier</u>: Ultra-Low-Power, Low-Noise, High-Gain, Near Rail-To-Rail input/output (I/O), Moderate-Speed Buffer Amplifier. Proof of silicon with typical/preliminary measurements available.

Please contact sales@ailinear.com for more information & ordering specific evaluation.


Parameter	Typical Spec	Typical Conditions: V _{DD} =1v, Temperature = 27C,
		unless otherwise stated
I _{DD} (nA)	~100	sAMP Gain=1 & V _{INPUT} ≈ 0.5 V _{DD}
V _{DD} Low (v)	~0.8	V _{DD} sweep 0v→1v
V _{DD} High (v)	~1	V _{DD} sweep 0v→1v
V _{OFFSET} (mv)	~±5	sAMP Gain=1 & V _{INPUT} ≈ 0.5 V _{DD}
I/O Swing to Rails (mv)	~±25	V _{DD} sweep 0v→2v
Gain (dB)	~88	sAMP Gain=1 & V _{INPUT} ≈ 0.5 V _{DD} . Tested at higher
		frequencies and extrapolated to DC
PSRR (dB)	~80	sAMP Gain=1 & V _{INPUT} ≈ 0.5 V _{DD} . Tested at higher
		frequencies and extrapolated to DC
Noise (μν/νHz)	~8	V _{OUT} noise 10Hz. sAMP Gain=1 & V _{INPUT} ≈ 0.5 V _{DD} .
fu (KHz)	~5	sAMP Gain=1 & 10mv p-p V _{INPUT} mid ≈ 0.5 V _{DD}
SR (v/ms)	~140	sAMP Gain=1 & 0.8v p-p pulse V _{INPUT} mid ≈ 0.5 V _{DD}
ts (µs)	~30	sAMP Gain=1 & 0.8v p-p pulse V _{INPUT} mid ≈ 0.5 V _{DD}
Cell Size (μm X μm)	~105x110	
TSMC Process Node (nm)	65	

See Disclaimers

sAMP Cell Layout

sAMP Block Diagram

Features:

- The sAMP's I_Q ≈ f(PTAT) → improved dynamic response's TC
- The $I_{DD} \approx f(I_Q) \approx f(\mu_{NMOS}) \approx f(R_{NMOS}) \neq f(V_{TH}) \rightarrow I_{DD}$ less sensitive to manufacturing variations
- The R_{NMOS} inside PTAT voltage loop coupled to V_{SS} for less sensitivity to V_{DD} noise
- At ultra-low IDD, utilizing voltage-mode gain boosting in FCTA stage
- The sAMP with internal class AB (push-pull) buffer (BUF) can drive larger loads (e.g. 10s of mega Ω s) in a low-power SoC